
Miklos Vajna
Software Engineer
vmiklos@collabora.com
2023-09-23

Introduction into Writer 
development

mailto:vmiklos@collabora.com


2

About Miklos

● From Hungary
● More details:

● https://www.collaboraoffice.com/about-us/ 
● Google Summer of Code 2010 / 2011

● Rewrite of the Writer RTF import/export
● Then a full-time LibreOffice developer for SUSE
● Now a contractor at Collabora

https://www.collaboraoffice.com/about-us/


3

Tools helping development

● Git: log, blame, bisect

● Ctags / id-utils + http://docs.libreoffice.org

● Gdb, xray, tpconv

● Vim / emacs

● Pretty-printing:

● SAL_DEBUG()

● Edit zip file in-place

● XML / RTF pretty-printer

● Doc-dumper

● Specifications: ODF, DOCX, DOC, RTF, etc.

http://docs.libreoffice.org/


4

Where is the code?

● LibreOffice has many modules (238 ATM on master)
● Writer-related modules

● sw (StarWriter): Writer itself
● Document model, layout, UI, some filters

● xmloff: (most of) ODF import/export
● writerfilter: UNO-based DOCX/RTF import
● oox: shared OOXML bits (between DOCX, XSLX, PPTX)
● starmath: equation editor



5

Document model

● The model from MVC

● View is called layout; controller is called a shell
● One opened document is one SwDoc instance

● SwDoc::GetNodes() → SwNode array (has pretty-printer in gdb)
● Inside that, building block: paragraphs

● One paragraph: one SwNode
● Terminology:

● Word has sections, paragraphs and runs
● Writer has page styles, sections, paragraphs and text portions



6

How properties are stored
● SwNode has the paragraph text as a single OUString

● Properties:

● SfxPoolItem

● Stored in an SfxItemSet

● Think of it as a map<int, any>

● “int” is called a WhichId:

● Writer specific ones are in
sw/inc/hintids.hxx

● SfxPoolItem is has many subclasses, examples:

● Bold: SvxWeightItem (Sv: StarView)

● Paragraph adjust (centered e.g.): SvxAdjustItem



7

More on SfxItemSet

● Can contain ranges of WhichIds: _pWhichRanges

● Array of pointers: value “n”: start of a range
● Value “n+1”: end of a range
● End of the list: 0

● Can have a parent: think of style inheritance
● While debugging: _nCount contains the size
● Items are pointers: _aItems

● If a property is “set”, its pointer is non-zero



8

Character attributes

● Direct formatting is in SwTxtNode::m_pSwpHints

● Each such formatting is a “hint”
● Either just a character index

● E.g. field
● Or a start-end (e.g. bold)



9

How to debug the doc. model

● Demo:

● Gdb
● Document model XML dump
● Xray



10

UNO API

● This is the public API, any change to it comes with some cost

● Still, not set in stone
● Extensions use this, UNO-supported languages (C++, Java, Python 

etc) can connect to a running soffice using URP
● If the document model is changed, the API has to be updated in most 

cases

● We serialize everything to ODF, and that uses the UNO API as well
● Bad: slower than necessary
● Good: UNO API is kept up to date



11

UNO API (continued)

● When adding a new feature, if this is implemented, can read / write the document 
model

● Other approach: implement the UI
● Properties themselves:

● Most SfxPoolItem has two methods to load / save:
● QueryValue() + PutValue()

● New frame, paragraph, character, list (etc.) property:

● sw/source/core/unocore/
● Maps between UNO's string + any key-value and WhichIds + SfxPoolItems

● Trick: InteropGrabBag



12

Layout

● Most complex part:

● No easy way to test automatically
● Think of missing fonts on test machines

● Document model has only paragraphs, not pages
● An opened document can have multiple views

● Try it: Window → new window
● Typically single layout: SwRootFrm (root frame)

● Inside: pages – SwPageFrame
● Paragraphs – SwTextFrame



13

Layout



14

Layout inside a paragraph

● No more frames:



15

Doc model → layout notifications

● SwModify: kind of a server, e.g. SwTextNode
● SwClient: the client, e.g. SwTextFrame
● SwModify ↔ SwClient is 1:N
● SwModify has Modify(SfxPoolItem* pOld, SfxPoolItem *pNew)

● So layout can react without building from scratch

● SwClient can only be registered in one SwModify

● sw::MergedPara helps with this for redlining, which needs an 
N:M relation between text nodes and frames



16

Related: TextFrames and drawings
● Writer has its own TextFrame on its UI

● Can contain anything: tables, columns, fields, etc.

● Does not support advanced drawing features

● Like rounded corners

● Drawinglayer (shared) takes care of all other drawings

● Also has a rectangle, with all features one can ever wish

● Rounded edges, rotations, etc.

● Except it doesn't know about Writer layout, so can't contain fields, etc.

● Problem for Word interop:

● The UI / UNO API now can create a TextBox for a draw shape in Writer

● This is just a draw shape + TextFrame pair in practice



17

Filters

● Every feature stored in the document model has to be serialized / loaded back to 
every file format

● Or you loose data
● In practice: ODF should not loose data, the rest should be good enough

● Important filters:

● ODF (.odt)
● OOXML (.docx)
● WW8 (.doc)
● RTF (.rtf)
● Rest: HTML, plain text, etc.



18

ODF filter

● If you extend the document model, this has to be updated before 
the change hits a release

● So users have at least one format which don't loose data for 
sure

● Mostly uses the UNO API:
● Code under xmloff/

● Some Writer-specific bits are using the internal API:
● sw/source/filter/xml/

● Is an open standard, proposals for new features can be submitted



19

OOXML: DOCX

● Import:

● Uses the UNO API, code under writerfilter/
● Tokenizer:

● Shared XML parser, model.xml → tokens
● Domain mapper:

● Handles the incoming stream of tokens and maps them to UNO API
● Tokenizer → dmapper traffic is XML logged:

● SW_DEBUG_WRITERFILTER=1, then /tmp/test.docx*.xml after load
● Export:

● Shared with RTF/WW8, uses internal API
● sw/source/filter/ww8/docx*



20

OOXML: shared parts

● For drawing and other shared parts, writerfilter calls into oox

● drawingML import: oox/source/drawingml/
● drawingML export: oox/source/export/
● Exporter also writes VML for Word 2007
● Also: metadata parsing (author date, etc.)

● Math expressions: both import/export under starmath/

● starmath/source/ooxml*



21

XFastParser

● DOCX import is a push parser
● Benefit: can implement feature incrementally
● Drawback: XML is text, would have to compare strings a lot → slow
● Solution: we know all the expected strings (namespaces, element 

names, attribute names, attribute values)

● Register a string → id map before parsing
● Exactly what XFastParser does



22

XFastParser (continued)

● Other than being “fast”, how does it work?
● Problem: we don't want a single handler class (startElement, 

endElement, etc) for the whole document, it would be a God 
object

● Solution: XFastContextHandler interface

● createFastChildContext() method to handle child contexts → 
can be a different class



23

DOCX import: model.xml

● DOCX tokenizer works by having all its configuration in the 
model.xml, then generated code does the real work

● Input: XML stream + mapping definitions (model.xml)
● Output: token stream

● XML elements: SPRM tokens, contains Attribute tokens
● XML attributes: Attribute tokens



24

DOCX import: model.xml syntax

● Parsed using a built-time Python script...

● Used to be worse, in XSLT
● Concept:

● Take the RNG schema (grammar / defines)
● Add matching resource tags that define the token maps

● Example: framePr



25

WW8 (.doc)

● Oldest Writer filter:

● binfilter was even older, but it's removed
● Import/export somewhat shared
● Uses the internal API
● Code under sw/source/filter/ww8/
● Shared (doc, xls, ppt) parts:

● filter/source/msfilter/
● Using doc-dumper may help



26

RTF (.rtf)

● Export is shared with DOC/DOCX:

● Code under sw/source/filters/ww8/rtf*
● Import is shared with DOCX:

● Code under writerfilter/source/rtftok/
● Domain mapper is the same for RTF and DOCX

● Math:

● Import generates OOXML tokens (RTF-specific part is inside the normal RTF 
tokenizer)

● Export is shared with DOCX:
● Code under starmath/source/rtf*



27

Tests

● What's easy: filter tests

● Both import / export

● Poke around with xray, then assert the UNO document model

● The rest is more challenging

● We have uwriter, which has access to private sw symbols

● Layout test: can assert the layout dump

● UI tests: uiwriter, it tests the shell



28

UI

● Again, shared with other modules where makes sense
● Doesn't use the UNO API
● Input/output for the dialog is an SfxItemSet
● Own toolkit: VCL

● Dialogs use the Gtk3 .ui format now
● Glade is a GUI to edit those

● If have to touch an older dialog: save + commit first
● Only then perform your functional changes



29

Help

● Lots of help buttons on UI
● Typically every existing dialog has a related help page
● If you add a new UI element, makes sense to spend 5 minutes on 

updating the related help

● Requires a --with-help build
● XML based, also stored in git, just different repo
● Offline help is generated from that



30

Extending ODF

● ODF is really close to the UNO API what we offer

● Typically 1 UNO property is 1 XML attribute in ODF

● If you extend the UNO API

● Go ahead with updating the ODF filter

● After implementation is ready:

● See https://wiki.documentfoundation.org/Development/ODF_Implementer_Notes#LibreOffice_ODF_extensions

● Submit a proposal to OASIS, so it can be part of the next version of 
the standard

https://wiki.documentfoundation.org/Development/ODF_Implementer_Notes#LibreOffice_ODF_extensions


31

Bookmarks

● Wiki: https://wiki.documentfoundation.org/Development/Writer

● New feature checklist, ODF implementer notes, etc.
● sw README: 

http://opengrok.libreoffice.org/xref/core/sw/README
● Older Writer notes:

● http://cgit.freedesktop.org/libreoffice/build/tree/doc/sw-flr.otl?h=master-backup
● http://cgit.freedesktop.org/libreoffice/build/tree/doc/sw.txt?h=master-backup

https://wiki.documentfoundation.org/Development/Writer
http://opengrok.libreoffice.org/xref/core/sw/README
http://cgit.freedesktop.org/libreoffice/build/tree/doc/sw-flr.otl?h=master-backup
http://cgit.freedesktop.org/libreoffice/build/tree/doc/sw.txt?h=master-backup

